
May, 2006

Advisor Answers

Accessing cells in use in Excel

VFP 9/8/7

Q: I'm automating modification of an existing Excel workbook. How
can I find out which cell is the last one currently used so I can work on

only the section of the sheet that's in use?

A: Usually, recording a macro is a good first step to solving an

automation problem. In this case, though, such a macro is misleading.
While Excel provides a way to go to the last cell (choose Edit | Goto

from the menu, then click Special and choose Last Cell), the macro
that results from recording this action has just one line:

Selection.SpecialCells(xlCellTypeLastCell).Select

Although you can look up the value of the constant xlCellTypeLastCell

(it's 11), translating this VBA code to VFP automation code isn't a good

way to find the range of cells in use because it works through the
Selection object and Select method. Whenever possible (which is

almost always), it's better to use Range objects in automation of both
Excel and Word. While there's only one Selection, you can define as

many ranges as you need. Also, setting the Selection requires the
automation server to actually highlight the specified range.

The best approach to this problem is using the UsedRange property of
the worksheet. UsedRange provides an object reference to the portion

of the worksheet currently in use. You might have a line of code like
this:

oRange = oExcel.ActiveSheet.UsedRange

Then, you can treat oRange like any other range. To find out which cell

is at the bottom right-hand corner of the used range, use the Rows
and Columns collections:

nLastRow = oRange.Rows.Count
nLastCol = oRange.Columns.Count

Of course, in this case, the number of rows and columns gives us the

address of the last cell because we know that the used range always
starts in row 1, column 1.

You can get the cell address of the range using the Address property:

cRangeAddress = oRange.Address

This property returns a value in the form R1C1, such as

"A1:D57".

Finally, it's worth pointing out that Excel determines the used range by

finding the last column containing any data and the last row containing
any data. The used range ends where those two intersect, even if that

cell itself is empty.

–Tamar

Specifying Print Area in Excel

VFP 9/8/7

Q: How can I specify the print area for an Excel worksheet via

Automation? How do I indicate which rows and columns should appear
on every page as headings?

A: Because worksheets have so much available work space, Excel lets
you specify what portion of the sheet is printed when you choose Print

interactively or call the PrintOut method. By default, it prints the used
range, so if that's what you want, you don't have to do anything

special.

If you do want to print a different range, set the PrintArea property of

the PageSetup object for the worksheet in question. You need the
address of the range to print. For example:

oExcel.ActiveSheet.PageSetup.PrintArea = "C7:G52"

Of course, you can use a variable containing a range; just reference its
Address property.

oExcel.ActiveSheet.PageSetup.PrintArea = oRange.Address

Excel also allows you to mark one or more rows and columns as

headings (or titles) that appear on each page of the print-out. These
are controlled by the PrintTitleRows and PrintTitleColumns properties

of the PageSetup object. As with PrintArea, you set them by specifying
an address. The last row or column you specify is considered as the

end of the title rows or columns, so for example, the following
command makes row 1 to 3 titles:

oExcel.ActiveSheet.PageSetup.PrintTitleRows = "$3:$3"

In addition to putting some rows and columns on every page, you can
also specify a header and footer for each page, containing information

that's not part of the worksheet's data. Each worksheet has a header
and footer, each divided into three sections: left, center and right. So

the PageSetup object has properties like LeftHeader and CenterFooter.
You specify text for each of these. For example:

oExcel.ActiveSheet.PageSetup.LeftFooter = ;
 "Prepared by Tamar E. Granor"

You can also put a picture in any of those places, using properties
RightHeaderPicture and LeftFooterPicture; each points to an object. To

specify the picture to use, set the Filename property of the object, like

this:

oExcel.ActiveSheet.PageSetup.CenterHeaderPicture.Filename;
 = "Logo.jpg"

Once you specify a picture, you can use additional properties of the

picture object to set height and width, as well as cropping.

When you've set up the print area, titles, headers and footers you

want, you can print your worksheet by calling the PrintOut method or
preview it by calling PrintPreview.

–Tamar

